# User:Squidmate

--Squidmate 18:21, 20 February 2008 (UTC) is the best. he is too cool, HOW DO YOU LIKE THAT UNYCLOPEDIA????

I do good mathematics and the such:

85-;+98.58=$\sum_{n=0}^\infty \frac{x^n}{n!}$/∞√89!523 ‰(≤783=980.65Y[67∂]ax2 + bx + c = 0 $ax^2 + bx + c = 0$$ax^2997 + bx + c = 0\,$ $x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$$S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}$$\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}$$u'' + p(x)u' + q(x)u=f(x),\quad x>a$ $|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,$$\lim_{z\rightarrow z_0} f(z)=f(z_0)\,$$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,$$f(x) = \begin{cases}1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x\le 1\end{cases}$${}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,$