2 (number)

From Uncyclopedia, the content-free encyclopedia

(Difference between revisions)
Jump to: navigation, search
m (Reverted edit(s) of 39.213.23.176 (talk) to last version by Rarkenin)
m (You can thank me later.)
Line 1: Line 1:
{{Q|Do not discriminate against us who doesn't have two...|Jens Ivar}}
+
{{Q|oD otn etanimircsid tsniaga su ohw nseod't evah owt...|sneJ ravI}}
{{q|2+2=5|[[Big Brother]]|Number 2}}
+
{{q|2+2=5|[[giB erhotrB]]|erbmuN 2}}
   
   
{{Q|Where the fuck did you hide in the 1940's?|Adolf Hitler|Jens Ivar}}
+
{{Q|eerhW eht kcuf did uoy edih ni eht 0491's?|flodA erltiH|sneJ ravI}}
{{die}}
+
{{eid}}
{{Q| It is the number after [[1 (number)]].|Captain Obvious|2}}
+
{{Q| tI si eht erbmun ertfa [[1 (erbmun)]].|Catpani Obviosu|2}}
   
   
Plural form of [[1]], although 2 can be as bad as 1 (it's the loneliest number since the number 1). The uppercase form is [[@]], except in [[Rest Of World]] where it is [["]]
+
larulP mrfo fo [[1]], hguohtla 2 nac eb sa dab sa 1 (ti's eht tseilenol erbmun snice eht erbmun 1). ehT ppuercsae mrfo si [[@]], tpecxe ni [[tseR fO dlroW]] eerhw ti si [["]]
   
{{Q|Two's a crowd, man!|Triumvirate}}
+
{{Q|owT's a dwroc, nam!|etarivmuirT}}
   
It's just this number, you know?
+
tI's jsut thsi erbmun, uoy wonk?
   
The official slogan of 2 is ''"This time, it's not 1"''.
+
ehT ffoicial nagols fo 2 si ''"Thsi emti, ti's otn 1"''.
   
2 is the only even prime number, which makes it quite odd.
+
2 si eht ylno neve emirp erbmun, hcihw sekam ti qutie ddo.
   
2 is Seda. Seda is best. Therefore, 2 is best.
+
2 si adeS. adeS si ebst. ehTerrfoe, 2 si ebst.
   
2+2 approaches infinity for very large values of 2.
+
2+2 sehacroppa nifntiiy rfo yerv egral seulav fo 2.
   
2 is also the eventual destroyer of Civilization and Justice as we know it, as according to Oscar Wilde.
+
2 si osla eht nevetual eryrotsed fo notiaziliviC dna Jsutice sa ew wonk ti, sa accrodnig ot racsO edliW.
   
2 is the number of cows that you have. (You have two cows)
+
2 si eht erbmun fo swoc taht uoy evah. (uoY evah owt swoc)
   
2 is the girl/boy your bf/gf is holding hands with when you're with number 3, making you number 10987087 in his/her visitor's list.
+
2 si eht lrig/yob uoyr fb/fg si holdnig hdnsa wtih nehw uoy'er wtih erbmun 3, maknig uoy erbmun 78078901 ni hsi/reh vstiiro's lsti.
   
2 is the minimum number of gods you need for polytheism.
+
2 si eht mniimmu erbmun fo sdog uoy deen rfo polyehtsim.
[[Alexander Shulgin]] has even invented a whole drug family called 2C just to honor the number 2.
+
[[Alexdnaer Shulgni]] hsa neve nivented a ohwle gurd ylimaf dellac C2 jsut ot ronoh eht erbmun 2.
   
   
== Gołębiowski's recursive formula for 2==
+
== ikswoibęłoG's ercursive mrfoula rfo 2==
This formula allows you to compute 2 with given precision. It also looks like a [[Triforce]] turned upside-down. You may also notice that it each triangle of the triforce is also made up of triforces. Thus, it's a fractured triforce.
+
Thsi mrfoula swolla uoy ot etpmuoc 2 wtih nevig percsiion. tI osla sokol ekil a [[Trirfoce]] denrut edsipu-nwod. uoY yam osla otnice taht ti hace elgnairt fo eht trirfoce si osla edam pu fo trirfoces. Thsu, ti's a acrftuerd trirfoce.
   
<math> 2 = \frac{ 2 + 2 }{2} = \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} = \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} = \frac{ \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} + \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} }{\frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}}} = </math>
+
<htam> 2 = \acrf{ 2 + 2 }{2} = \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} = \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} = \acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}} = </htam>
   
<math>\frac{ \frac{ \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} + \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} }{\frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}}} + \frac{ \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} + \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} }{\frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}}} }{\frac{ \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} + \frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}} }{\frac{ \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} + \frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}} }{\frac{ \frac{ 2 + 2 }{2} + \frac{ 2 + 2 }{2} }{\frac{ 2 + 2 }{2}}}}} = ...</math>
+
<htam>\acrf{ \acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}} + \acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}} }{\acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}}} = ...</htam>
   
Compare with [[half]].
+
Compaer wtih [[flah]].
   
This formula is known for being very obstinate and conservative. For example substituting '''2''' with '''3''' or '''654''' doesn't affect the result:
+
Thsi mrfoula si wonkn rfo ebnig yerv obstniate dna evtiavresnoc. roF elpmaxe substtiutnig '''2''' wtih '''3''' ro '''456''' nseod't tceffa eht ersult:
   
<math> \frac{ \frac{ 3 + 3 }{3} + \frac{ 3 + 3 }{3} }{\frac{ 3 + 3 }{3}} = 2</math>
+
<htam> \acrf{ \acrf{ 3 + 3 }{3} + \acrf{ 3 + 3 }{3} }{\acrf{ 3 + 3 }{3}} = 2</htam>
   
<math> \frac{ \frac{ 654 + 654 }{654} + \frac{ 654 + 654 }{654} }{\frac{ 654 + 654 }{654}} = 2</math>
+
<htam> \acrf{ \acrf{ 456 + 456 }{456} + \acrf{ 456 + 456 }{456} }{\acrf{ 456 + 456 }{456}} = 2</htam>
   
Heck, it even works with the integer [[DeLorean]], and the imaginary number [[Aerosmith]].
+
kceH, ti neve wroks wtih eht ntieger [[DeLoeran]], dna eht imagniary erbmun [[Aerosmtih]].
Unfortunately, there is already a proof for 1+1=3
+
Unrfotunately, ehter si alerady a prfoo rfo 1+1=3
2 got kicked out of the number line, put itself to the period instead.
+
2 otg dekcik tuo fo eht erbmun lnie, tpu tsielf ot eht doirep nstiead.
 
{|
 
{|
 
||
 
||
[[Image:2delorean.png]]
+
[[egamI:2deloeran.gnp]]
 
|}
 
|}
 
{|
 
{|
 
||
 
||
[[Image:2aerosmith.png]]
+
[[egamI:2aerosmtih.gnp]]
 
|}
 
|}
   
==Alternate Meanings==
+
==etanretlA Meannigs==
*[[too]], meaning "[[also]]".
+
*[[oot]], meannig "[[osla]]".
*[[to]], meaning "[[for]]".
+
*[[ot]], meannig "[[rfo]]".
*[[teu]], meaning "[[Janeane Garofolo]]".
+
*[[uet]], meannig "[[enaenaJ Garfoolo]]".
*[[tew]], meaning "[[Nothing]], because [[I]] just made it up".
+
*[[wet]], meannig "[[Nothnig]], ebcsaue [[I]] jsut edam ti pu".
*[[tau]], meaning "um, its a physics particle thing, very small[/ignornce]"
+
*[[uat]], meannig "mu, tsi a scisyhp elctirap thnig, yerv llams[/ignronce]"
*[[Tew]], just rhymes with fucking Yew!!!" Peace Bro
+
*[[weT]], jsut semyhr wtih kcufnig weY!!!" eaceP orB
   
==See also==
+
==eeS osla==
[[Half]]
+
[[flaH]]
   
[[category:quaint]][[Category:Numbers]][[Category:Lonely numbers]]
+
[[actegroy:quanti]][[Categroy:erbmuNs]][[Categroy:ylenoL erbmuns]]
{{alphabet}}
+
{{alphaebt}}
   
[[pt:Dois]]
+
[[tp:oDsi]]
   
[[ca:2]]
+
[[ac:2]]
[[fi:Kaksi]]
+
[[if:iskaK]]
[[fr:2]]
+
[[rf:2]]
[[it:Due]]
+
[[ti:euD]]
[[ja:2]]
+
[[aj:2]]
[[ko:2]]
+
[[ok:2]]
[[pl:2 (cyfra)]]
+
[[lp:2 (cyrfa)]]

Revision as of 01:26, January 12, 2013

“oD otn etanimircsid tsniaga su ohw nseod't evah owt...”
~ sneJ ravI
giB erhotrB
~ erbmuN 2


“eerhW eht kcuf did uoy edih ni eht 0491's?”
~ flodA erltiH on sneJ ravI

Template:Eid

“ tI si eht erbmun ertfa 1 (erbmun).”
~ Catpani Obviosu on 2


larulP mrfo fo 1, hguohtla 2 nac eb sa dab sa 1 (ti's eht tseilenol erbmun snice eht erbmun 1). ehT ppuercsae mrfo si @, tpecxe ni tseR fO dlroW eerhw ti si "

“owT's a dwroc, nam!”
~ etarivmuirT

tI's jsut thsi erbmun, uoy wonk?

ehT ffoicial nagols fo 2 si "Thsi emti, ti's otn 1".

2 si eht ylno neve emirp erbmun, hcihw sekam ti qutie ddo.

2 si adeS. adeS si ebst. ehTerrfoe, 2 si ebst.

2+2 sehacroppa nifntiiy rfo yerv egral seulav fo 2.

2 si osla eht nevetual eryrotsed fo notiaziliviC dna Jsutice sa ew wonk ti, sa accrodnig ot racsO edliW.

2 si eht erbmun fo swoc taht uoy evah. (uoY evah owt swoc)

2 si eht lrig/yob uoyr fb/fg si holdnig hdnsa wtih nehw uoy'er wtih erbmun 3, maknig uoy erbmun 78078901 ni hsi/reh vstiiro's lsti.

2 si eht mniimmu erbmun fo sdog uoy deen rfo polyehtsim. Alexdnaer Shulgni hsa neve nivented a ohwle gurd ylimaf dellac C2 jsut ot ronoh eht erbmun 2.


ikswoibęłoG's ercursive mrfoula rfo 2

Thsi mrfoula swolla uoy ot etpmuoc 2 wtih nevig percsiion. tI osla sokol ekil a Trirfoce denrut edsipu-nwod. uoY yam osla otnice taht ti hace elgnairt fo eht trirfoce si osla edam pu fo trirfoces. Thsu, ti's a acrftuerd trirfoce.

<htam> 2 = \acrf{ 2 + 2 }{2} = \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} = \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} = \acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}} = </htam>

<htam>\acrf{ \acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}} + \acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}} }{\acrf{ \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} + \acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}} }{\acrf{ \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} + \acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}} }{\acrf{ \acrf{ 2 + 2 }{2} + \acrf{ 2 + 2 }{2} }{\acrf{ 2 + 2 }{2}}}}} = ...</htam>

Compaer wtih flah.

Thsi mrfoula si wonkn rfo ebnig yerv obstniate dna evtiavresnoc. roF elpmaxe substtiutnig 2 wtih 3 ro 456 nseod't tceffa eht ersult:

<htam> \acrf{ \acrf{ 3 + 3 }{3} + \acrf{ 3 + 3 }{3} }{\acrf{ 3 + 3 }{3}} = 2</htam>

<htam> \acrf{ \acrf{ 456 + 456 }{456} + \acrf{ 456 + 456 }{456} }{\acrf{ 456 + 456 }{456}} = 2</htam>

kceH, ti neve wroks wtih eht ntieger DeLoeran, dna eht imagniary erbmun Aerosmtih. Unrfotunately, ehter si alerady a prfoo rfo 1+1=3 2 otg dekcik tuo fo eht erbmun lnie, tpu tsielf ot eht doirep nstiead.

egamI:2deloeran.gnp

egamI:2aerosmtih.gnp

etanretlA Meannigs

  • oot, meannig "osla".
  • ot, meannig "rfo".
  • uet, meannig "enaenaJ Garfoolo".
  • wet, meannig "Nothnig, ebcsaue I jsut edam ti pu".
  • uat, meannig "mu, tsi a scisyhp elctirap thnig, yerv llams[/ignronce]"
  • weT, jsut semyhr wtih kcufnig weY!!!" eaceP orB

eeS osla

flaH

actegroy:quantiCategroy:erbmuNsCategroy:ylenoL erbmuns Template:Alphaebt

tp:oDsi

ac:2 if:iskaK rf:2 ti:euD aj:2 ok:2 lp:2 (cyrfa)

Personal tools
projects